3.1 Notes: Quadratic Functions
$f(x)=a x^{2}+b x+c \quad($ general form $)$ $\uparrow y$-intercept located at ($0, \mathrm{c}$)
$f(x)=a(x-h)^{2}+k \quad$ (standard form)
Vertex = (h, k)
Note: use opposite value of what is inside parentheses

If $a>0$, then vertex is a minimum point. If $a<0$, then vertex is a maximum point.

Reminders:

To solve for x -intercepts, let $\mathrm{y}=0$
To solve for y -intercepts, let $\mathrm{x}=0$
To "complete the square": factor "a" using parentheses, then divide " x " coefficient by 2 and square it

To "complete the square": factor "a" using parentheses, then divide " x " coefficient by 2 and square it

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =2 \mathrm{x}^{2}-16 \mathrm{x}+1 \\
& =2\left(\mathrm{x}^{2}-8 \mathrm{x}+\ldots\right)-\ldots+1 \\
& =2\left(\mathrm{x}^{2}-8 \mathrm{x}+16\right)-32+1 \\
& =2(\mathrm{x}-4)^{2}-31 \\
2 \text { is positive } & \text { so } \mathrm{h}
\end{aligned}
$$ parabola opens

Vertex $=(4,31)$
upward and has
a minimum value

Today's assignment: ONLY sketch graphs for \#15,17,19,22;
NO DECIMALS \rightarrow use fractions for \#23,29,33

$$
\begin{aligned}
& \text { 22. } \left.f(x)=\left(2 x^{2}+12 x\right)+10\right) \xrightarrow{\text {-int }} \text { answer parts and } \\
& \text { a) } y=2\left(x^{2}+6 x+9\right)-18+10\left[\begin{array}{l}
(-1,0) \\
(-5,0)
\end{array}\right] \\
& x \text {-int let } y=0 \\
& \frac{6}{2}=3 \quad y=2(x+3)^{2}-8 \\
& (3)^{2}=9 \\
& \text { b.) Vertex: }((-3,-8) \\
& \frac{8}{2}=\frac{2(x+3)^{2}}{2} \\
& \pm \sqrt{4}=\sqrt[2]{(x+3)^{2}} \\
& \pm 2=x+3, x=-1 \\
& -3 \pm 2=x<x=-5
\end{aligned}
$$

Today's assignment: ONLY sketch graphs for \#15,17,19,22;
NO DECIMALS \rightarrow use fractions for \#23,29,33
22. $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{2}+12 \mathrm{x}+10 \rightarrow$ answer parts a-d
c.) Sketch using info from part b.
d.) Domain:

$$
x=\mathbb{R}
$$

(or) $(-\infty, \infty)$
Range: $y \geq-8$ (๒) $[-8, \infty)$

Today's assignment: ONLY sketch graphs for \#15,17,19,22;
NO DECIMALS \rightarrow use fractions for \#23,29,33
33. $\mathrm{h}(\mathrm{x})=1-\mathrm{x}-\mathrm{x}^{2} \rightarrow$ only answer parts a and c

$$
\begin{aligned}
& \text { a.) } y=\left(-x^{2}-x\right)+1 \\
& y=-1\left(x^{2}+1 x+\frac{1}{4}\right)++\frac{1}{4}+1 \\
&\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \begin{array}{l}
\frac{y}{4}=-1\left(x+\frac{1}{2}\right)^{2}+\frac{5}{4} \\
n
\end{array} \text { c) } \\
& \text { ataximum } \\
& \text { at }\left(-\frac{1}{2}, \frac{5}{4}\right)
\end{aligned}
$$

5. $f(x)=-x^{2}+6 x-5$

6. Hint: Use the graph to find all but the y-intercept.
7. $f(x)=2 x^{2}-4 x-1$

Use the graph to identify:
a) vertex
x-int, y-int
b) Minimum
or maximum
c) Domain \& Range
7. Hint:

Use quadratic formula to find the x-intercepts in this case.

$$
\begin{gathered}
0=2 x^{2}-4 x-1 \\
\text { a b c }
\end{gathered}
$$

